

LAWRENCE BERKELEY NATIONAL LABORATORY, ENGINEERING DIVISION

Nondestructive Evaluation of Spot Welds Using Acoustic and Thermographic Imaging Techniques

Daniel Türler
Deborah Hopkins, Frédéric Reverdy
Lawrence Berkeley National Laboratory

1 Cyclotron Road

Berkeley, CA 94720

Overview

- Introduction
- Samples
- Thermographic Techniques
- Conclusion
- Ultrasonic Methods
- Conclusions

Introduction

- Online inspection of automotive structures
- Non contact sensors
 - * fast, robust, accurate and cost-effective
 - * suitable for online inspection
 - * real time diagnostic
- Analytical and numerical models

Samples

- Strips of galvanized steel
 - 5 welds plus 1 anchor weld
 - 9 reference strips for system calibration
 - Cold (no nugget pulled from sheet)
 - Undersized (nugget is too small)
 - Satisfactory (nugget / $4*\sqrt{t}$)
 - Total of 30 sample strips with random weld quality

Pulsed Thermography

- 8-12 micron scanning camera
- Full frame rate 60Hz
- Line scan rate 1.8kHz
- Image size of strip ~ 760x80
- Short duration thermal pulse (3ms)
- Power limited by detector saturation
- Acquired 128 frames after pulse

Signal analyses

Post-processing algorithms:

- Polynomial fit of log/log scale data
- Thermal diffusivity analyses
- Pulse phase analyses

Polynomial Fit

- Data is expressed with only 6 coefficients
- Dropping higher order terms provides smoothing without blurring
- Gradient can be determined analytically
- Scanner data can be corrected to remove acquisition delays

Polynomial Fit

Log[Time]

Thermal Diffusivity

Log[Time]

Thermal Diffusivity

Thermal Diffusivity

5 cold welds in galvanized steel

Pulse Phase Thermography (PPT)

- Provides good information at depth
- Compiles the time series into two frames
- Fast algorithm

Raw IR data:

Maximum phase:

 $\phi(u)=\tan^{-1}(Im(u)/Re(u))$

Maximum Amplitude: I(u)=Sqrt(Im(u)²+Re(u)²)

5 satisfactory welds

PPT maximum phase:

PPT maximum amplitude:

5 cold welds

PPT maximum phase (strip c3):

PPT maximum amplitude (strip c3):

Conclusions

- Pulsed thermography provides good information about welding process
- To date not a reliable method to determine weld quality in galvanized steel
- Maximum phase and amplitude images good indicator but not fully understood
- Need to analyze and incorporate pulse strength into the analysis
- Several post-processing methods required